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Abstract

A very preliminary design of a µ+µ− collider ring is presented
briefly. It consists of the design concepts:

• 2.5π unit cell

• local chromaticity correction

• quasi-isochronous ring

• improvement of dynamic aperture using octupoles and decapoles.

The first two concepts have been verified in the KEKB B–Factory successfully.

Machine Parameters

A storage ring has been designed to satisfy the requirements on a µ+µ−

collider given by R. B. Palmer et al. (BNL–62740). This ring has parameters
which will be at the extreme of possible storage ring colliders, as shown in
Table 1:

The Unit Cell

Issues to be considered in designing the unit lattice are:

• The circumference must be minimized for a given field of a bend.

• The ring must be quasi-isochronous, i.e., αp
<∼ 10−5. Since the injected

beam has σz = 3 mm and σδ =0.2%, if there is no rf, the momentum
compaction must be less than σz/(Cneffσδ) ∼ 2.5×10−7, which looks too
difficult, because of tolerances on the controlability, nonlinear terms, etc.
Higher synchrotron tune requires more rf, which is source of instability.
Smaller synchrotron tune is difficult due to the nonlinear momentum
compactions.

1Assuming fRF = 500 MHz.
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Table 1: Parameters of this design comparing with BNL–62740.

This design BNL–62740
Beam energy E 2 TeV
Lorentz factor γ 18900
Inj. emittances γεx,y 50 50 µm

Inj. mom. spread σδ 0.2 0.2 %
Inj. bunch length σz 3 3 mm

Bending field BD 10 9 T
Circumference C ∼ 6 7 km
Effective turns neff ∼ 1000 ∼ 900

Beta at IP β∗
x/β

∗
y 3/3 3/3 mm

IP free length �∗ 6 6.5 m
IP beam sizes σ∗

x/σ
∗
y 2.8/2.8 2.8/2.8 µm

IP quad field B0 6.5 6.4 T
IP quad radius a 200 120 mm

Momen. compact. αp 5.4 × 10−6

Rf voltage1 Vc 2.2 GV
Synch. tune νs 0.003

Repetition rate f – 15 Hz
Muons/bunch N – 2 × 1012

Bunches/beam NB – 2
Luminosity L – 1 × 1035 cm−2s−1

• It would be better (not yet confirmed) to have a non-interleaved sex-
tupoles to reduce the nonlinearity of sextupoles.

A 2.5π cell, which has been applied to KEKB, has a capability to satisfy
above requirements. Figure 1 shows the unit cell of this design. This unit
cell has a momentum compaction αp = −2.2 × 10−4 which results αp =
5.4 × 10−5 together with the compaction from the interaction region(IR).
Some parameters like number of cells/ring (24 in this design), length of quads,
etc. have not been optimized yet.

Quasi-Isochronous Ring

When the linear momentum compaction is small, the higher order momentum
compaction limits the size of the rf-bucket.

• The third order term can be controlled by sextupoles with the term H =
k′η3δ3/6. The solution is obtained simultaneously with the chromaticity
correction.

• The the fourth order is significant. This is also optimized by sextupoles
in this design, but octupoles may be more efficient (not yet tried).
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Figure 1: The unit cell of this ring. Sextupole pairs are placed with pseudo −I

transformations. The phace advances per cell are 2.5π for both planes. This ring
has 24 unit cells.

Figure 2: The optics and the injected beam sizes of the ring, from IP to IP. 22
sextupole families are installed.

3



Figure 3 show ∆p/p vs. ∆p/p/αp (path length) after the optimization.
It is seen that the third order term is nearly cancelled and the fourth order
is dominant. The corresponding phase space is shown in Fig. 4.

Figure 3: Moentum offset vs. path length.

Chromaticity Correction

Because of the round-beam focusing with very small βs, the chromaticity
correction becomes very difficult in this ring. Table 2 compares the chro-
maticities of this ring with other machines:

This design KEKB JLC-I
β∗

x/β
∗
y 3/3 330/8 10/0.1 mm

�∗ 6 1.9 2.5 m
ξx/ξy (each side) 340/4300 76/270 250/3400

The basic strategy of the chromaticity correction is the “local correction”
with 2 families of sextupoles around IP, each of them consists of a pair of
sextupoles connected by −I. Since our goal is a round-beam focusing, there
are four combinations of the order of the focusing and chromaticity correction
planes:

Focus Correction Difficulties
IP–y–x y–x x-chromaticity correction
IP–y–x x–y x-higher order dispersion from sexts.
IP–x–y x–y y-chromaticity correction
IP–x–y y–x
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Figure 4: Shape of the longitudinal phase space.

Figure 5: Optics of the local chromaticity correction section
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Thus this design applies the last one. The design of optics of the local
chromaticity correction is shown in Fig. 5.

This scheme prefers smaller x- and larger y-chromaticities. The design of
the final quads are so chosen, as shown in Fig. 6.

B0 = 6.5  T

a
=

11
1 

m
m

a
=

19
8

 m
m

a
=

98
 m

m
a

=
43

 m
m

a
=

30
 m

m
l*

=
6

 m

IP

Figure 6: Betas and beam sizes in the final quads. The aperture of final
quadrupoles with the pole-tip field of 6.5 T are also shown.
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Higher order chromaticities are corrected by 22 families of sextupoles.
An optimizations of momentum dependence of tunes, betas at IP and rf
for off-momentum orbits and finite-amplitude trajectories and higher-order
momentum compactions were done. The optimization involves correction
octupoles and decapoles around IP. The resulting momentum dependences
of tunes and betas are shown in Fig. 7.

Figure 7: Momentum dependences of tunes and β∗
x,y. The horizontal(solid) plane

is more difficult than the vertical(dashed).

Dynamic Aperture

The dynamic aperture of this ring is limited by
• The nonlinear maxwellian fringe of final quads and quads around local

correction sextupoles. It is corrected by additional octupole components
of final quads. Since this is not a local compensation, their chromatic
dependences remain. Decapole components of quads at IR are used to
correct the residual.

• The imperfectness of the chromaticity correction.

• Asymmetry of the synchtotron phase space due to
exp(: δ3 :) term.

The strengths of octupoles and decapoles are determined by “Finite Am-
plitude Matching”, which fits linear optics around trajectories starting IP
with an offset u = (Jx, φx, Jy, φy, 0, δ). 18 trajectories are chosen with ampli-
tudes

u = (8εx, 2nπ/3, 0, 0, 0, 0), n = 0..2

u = (0, 0, 8εy, 2nπ/3, 0, 0), n = 0..2

u = (0.25εx, (2n + 5)π/3, 0, 0, 0, 0.002 × m), n = 0..2, m = −1, 1

u = (0, 0, 0.25εy, (2n + 5)π/3, 0, 0.002 × m), n = 0..2, m = −1, 1.
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Figures 8 and 9 show the results of the dynamic aperture with and with-
oput synchrotron motion, respectively. The effects of octupoles and decapoles
look quite strong.

Figure 8: Dynamic aperture of this ring with synchrotron motion. Octupole and
decapole corrections improve the aperture drastically.

Figure 9: Dynamic aperture of this ring without synchrotron motion. Octupole
and decapole corrections improve the aperture drastically.
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